Breeding Methods in Self Pollinated Crops

Breeding Methods in Self Pollinated Crops

Mass selection

In mass selection, seeds are collected from (usually a few dozen to a few hundred) desirable appearing individuals in a population, and the next generation is sown from the stock of mixed seed. This procedure, sometimes referred to as phenotypic selection, is based on how each individual looks. Mass selection has been used widely to improve old “land” varieties, varieties that have been passed down from one generation of farmers to the next over long periods.

An alternative approach that has no doubt been practiced for thousands of years is simply to eliminate undesirable types by destroying them in the field. The results are similar whether superior plants are saved or inferior plants are eliminated: seeds of the better plants become the planting stock for the next season.  

A modern refinement of mass selection is to harvest the best plants separately and to grow and compare their progenies. The poorer progenies are destroyed and the seeds of the remainder are harvested. It should be noted that selection is now based not solely on the appearance of the parent plants but also on the appearance and performance of their progeny. Progeny selection is usually more effective than phenotypic selection when dealing with quantitative characters of low heritability. It should be noted, however, that progeny testing requires an extra generation; hence gain per cycle of selection must be double that of simple phenotypic selection to achieve the same rate of gain per unit time.

Mass selection, with or without progeny test, is perhaps the simplest and least expensive of plant-breeding procedures. It finds wide use in the breeding of certain forage species, which are not important enough economically to justify more detailed attention.

Pure-line selection 

Pure-line selection generally involves three more or less distinct steps: (1) numerous superior appearing plants are selected from a genetically variable population; (2) progenies of the individual plant selections are grown and evaluated by simple observation, frequently over a period of several years; and (3) when selection can no longer be made on the basis of observation alone, extensive trials are undertaken, involving careful measurements to determine whether the remaining selections are superior in yielding ability and other aspects of performance.

Any progeny superior to an existing variety is then released as a new “pure-line” variety. Much of the success of this method during the early 1900s depended on the existence of genetically variable land varieties that were waiting to be exploited. They provided a rich source of superior pure-line varieties, some of which are still represented among commercial varieties. In recent years the pure-line method as outlined above has decreased in importance in the breeding of major cultivated species; however, the method is still widely used with the less important species that have not yet been heavily selected.

A variation of the pure-line selection method that dates back centuries is the selection of single-chance variants, mutations or “sports” in the original variety. A very large number of varieties that differ from the original strain in characteristics such as colour, lack of thorns or barbs, dwarfness, and disease resistance have originated in this fashion.


During the 20th century planned hybridization between carefully selected parents has become dominant in the breeding of self-pollinated species. The object of hybridization is to combine desirable genes found in two or more different varieties and to produce pure-breeding progeny superior in many respects to the parental types.

Genes, however, are always in the company of other genes in a collection called a genotype. The plant breeder’s problem is largely one of efficiently managing the enormous numbers of genotypes that occur in the generations following hybridization. As an example of the power of hybridization in creating variability, a cross between hypothetical wheat varieties differing by only 21 genes is capable of producing more than 10,000,000,000 different genotypes in the second generation. At spacing normally used by farmers, more than 50,000,000 acres would be required to grow a population large enough to permit every genotype to occur in its expected frequency. While the great majority of these second generation genotypes are hybrid (heterozygous) for one or more traits, it is statistically possible that 2,097,152 different pure-breeding (homozygous) genotypes can occur, each potentially a new pure-line variety. These numbers illustrate the importance of efficient techniques in managing hybrid populations, for which purpose the pedigree procedure is most widely used.

Pedigree breeding starts with the crossing of two genotypes, each of which have one or more desirable characters lacked by the other. If the two original parents do not provide all of the desired characters, a third parent can be included by crossing it to one of the hybrid progeny of the first generation (F1). In the pedigree method superior types are selected in successive generations, and a record is maintained of parent–progeny relationships.

The F2 generation (progeny of the crossing of two F1 individuals) affords the first opportunity for selection in pedigree programs. In this generation the emphasis is on the elimination of individuals carrying undesirable major genes. In the succeeding generations the hybrid condition gives way to pure breeding as a result of natural self-pollination, and families derived from different F2 plants begin to display their unique character. Usually one or two superior plants are selected within each superior family in these generations. By the F5 generation the pure-breeding condition (homozygosity) is extensive, and emphasis shifts almost entirely to selection between families. The pedigree record is useful in making these eliminations. At this stage each selected family is usually harvested in mass to obtain the larger amounts of seed needed to evaluate families for quantitative characters. This evaluation is usually carried out in plots grown under conditions that simulate commercial planting practice as closely as possible. When the number of families has been reduced to manageable proportions by visual selection, usually by the F7 or F8 generation, precise evaluation for performance and quality begins. The final evaluation of promising strains involves (1) observation, usually in a number of years and locations, to detect weaknesses that may not have appeared previously; (2) precise yield testing; and (3) quality testing. Many plant breeders test for five years at five representative locations before releasing a new variety for commercial production.

The bulk-population method of breeding differs from the pedigree method primarily in the handling of generations following hybridization. The F2 generation is sown at normal commercial planting rates in a large plot. At maturity the crop is harvested in mass, and the seeds are used to establish the next generation in a similar plot. No record of ancestry is kept. During the period of bulk propagation natural selection tends to eliminate plants having poor survival value. Two types of artificial selection also are often applied: (1) destruction of plants that carry undesirable major genes and (2) mass techniques such as harvesting when only part of the seeds are mature to select for early maturing plants or the use of screens to select for increased seed size. Single plant selections are then made and evaluated in the same way as in the pedigree method of breeding. The chief advantage of the bulk population method is that it allows the breeder to handle very large numbers of individuals inexpensively.

Often an outstanding variety can be improved by transferring to it some specific desirable character that it lacks. This can be accomplished by first crossing a plant of the superior variety to a plant of the donor variety, which carries the trait in question, and then mating the progeny back to a plant having the genotype of the superior parent. This process is called backcrossing. After five or six backcrosses the progeny will be hybrid for the character being transferred but like the superior parent for all other genes. Selfing the last backcross generation, coupled with selection, will give some progeny pure breeding for the genes being transferred. The advantages of the backcross method are its rapidity, the small number of plants required, and the predictability of the outcome. A serious disadvantage is that the procedure diminishes the occurrence of chance combinations of genes, which sometimes leads to striking improvements in performance.

 Hybrid varieties
The development of hybrid varieties differs from hybridization. The F1 hybrid of crosses between different genotypes is often much more vigorous than its parents. This hybrid vigour, or heterosis, can be manifested in many ways, including increased rate of growth, greater uniformity, earlier flowering, and increased yield, the last being of greatest importance in agriculture.

Hardy-Weinberg Equilibrium

The Hardy-Weinberg Law states: In a large, random-mating population that is not affected by the evolutionary processes of mutation, migration, or selection, both the allele frequencies and the genotype frequencies are constant from generation to generation. Furthermore, the genotype frequencies are related to the allele frequencies by the square expansion of those allele frequencies. In other words, the Hardy-Weinberg Law states that under a restrictive set of assumptions, it is possible to calculate the expected frequencies of genotypes in a population if the frequency of the different alleles in a population is known.

The genotype frequencies are calculated using the square expansion of the allele frequencies. To illustrate this concept, assume that at some locus, A, you have two alleles, call them A1, and A2. Assume that the frequency of allele A1 is p and the frequency of allele A2 is q. We can write this as:

 f(A1) = p f(A2) = q

Under Hardy-Weinberg conditions, the expected genotypic proportions in the population are

 (p + q)2 

The square expansion of allele frequencies when there are two alleles is p2 + 2pq + q2 meaning that: f(A1A1) = p2, f(A1A2) = 2pq, and f(A2A2) = q2

If there were a third allele, call it A3, and it was present at frequency r, then the expected genotypic proportions would be (p + q + r)2. In other words, the expected genotypic frequencies would be: f(A1A1) = p2, f(A2A2) = q2, f(A3A3) = r2 , f(A1A2) = 2pq, f(A1A3) = 2pr, and f(A2A3) = 2qr.

The implications of the Hardy-Weinberg Law are that:

  1. The population is in a state of equilibrium.
  2. The frequencies of alleles in a population will remain constant from generation to generation. 
  3. The genotypic frequencies will remain constant from generation to generation. 
  4. The Hardy-Weinberg proportions will be reached in a single generation of random-mating.

As an example, consider a diploid pathogen such as an oomycete that has two alleles at an isozyme locus. If the frequency of the fast allele (F) is 0.40 and the frequency of the slow alleles (S) is 0.60, then the expected frequencies of the genotypes FF, FS, and SS would be 0.16, 0.48, and 0.36, respectively.

The Hardy-Weinberg Law offers a model that is often used as a starting point for studying the population genetics of diploid organisms that meets the basic assumptions of large population size, random-mating, and no migration, mutation, or selection. Unfortunately, the Hardy-Weinberg Law cannot be applied to haploid pathogens. If a population is found not to be in H-W equilibrium, then one of the assumptions in the Law has been violated. That is, there has been non-random mating, or selection or migration have affected the population. At this point, hypotheses are proposed and experiments are conducted to determine why a population is not at equilibrium.

Self Pollinated Crops

Rice,  Wheat, Barley, Oats, Chickpea, Pea, Cowpea, Lentil, Green gram, Black gram, Soybean, Common bean, Moth bean, Linseed, Sesame, Khesari, Sunhemp, Chillies, Brinjal, Tomato, Okra, Peanut, Potato, etc.

Leave a Reply